top of page

Prostate Cancer, Nutrition, and Dietary Supplements (PDQ®)–Health Professional Version

Introduction This cancer information summary provides an overview of the use of various foods and dietary supplements for reducing the risk of developing prostate cancer or for treating prostate cancer. This summary includes the history of research, reviews of laboratory and animal studies, and results of clinical trials on the following foods or dietary supplements:

Each type of dietary supplement or food will have a dedicated section in the summary, and new topics will be added over time. Note: A separate PDQ summary on PC-SPES is also available. Prostate cancer is the most common noncutaneous cancer affecting men in the United States. On the basis of data from 2014 to 2016, it is estimated that 11.6% of U.S. men will be diagnosed with prostate cancer during their lifetimes.[1] Many studies suggest that complementary and alternative medicine (CAM) use is common among prostate cancer patients, and the use of vitamins, supplements, and specific foods is frequently reported by these patients. For example, the Prostate CAncer Therapy Selection (PCATS) study was a prospective study that investigated men’s decision-making processes about treatment following a diagnosis of local-stage prostate cancer. As part of this study, patients completed surveys regarding CAM use, and more than half of the respondents reported using one or more CAM therapies, with mind-body modalities and biologically based treatments being the most commonly used.[2] International studies have reported similar findings. A Swedish study published in 2011 found that, overall, participants with prostate cancer were more likely to have used supplements than were healthy population-based control subjects. Supplement use was even more common among patients with the healthiest dietary patterns (e.g., high consumption of fatty fish and vegetables).[3] In a Canadian study, CAM use was reported among 39% of recently diagnosed prostate cancer patients, and the most commonly used forms of CAM were herbals, vitamins, and minerals. Within those categories, saw palmetto, vitamin E, and selenium were the most popular. The two most popular reasons for choosing CAM were to boost the immune system and to prevent recurrence.[4] According to another Canadian study, approximately 30% of survey respondents with prostate cancer reported using CAM treatments. In that study, vitamin E, saw palmetto, and lycopene were most commonly used.[5] A British study published in 2008 indicated that 25% of prostate cancer patients used CAM, with the most frequently reported interventions being low-fat diets, vitamins, and lycopene. The majority of CAM users in this study cited improving quality of life and boosting the immune system as the main reasons they used CAM.[6] Vitamin and supplement use has also been documented in men at risk of developing prostate cancer. One study examined vitamin and supplement use in men with a family history of prostate cancer. At the time of the survey, almost 60% of the men were using vitamins or supplements. One-third of the men were using vitamins and supplements that were specifically marketed for prostate health or chemoprevention (e.g., selenium, green tea, and saw palmetto).[7] A 2004 study examined herbal and vitamin supplement use in men who attended a prostate cancer screening clinic. Men who attended the screening clinic completed questionnaires about supplement use. Of the respondents, analysis revealed that a reported 70% used multivitamins, and 21% used herbal supplements.[8] A meta-analysis published in 2008 reviewed studies that reported vitamin and mineral supplement use among cancer survivors. The results showed that, among prostate cancer survivors, vitamin or mineral use ranged from 26% to 35%.[9] Although many prostate cancer patients use CAM treatments, they do not all disclose their CAM use to treating physicians. According to results from the PCATS study, 43% of patients discussed their CAM use with a healthcare professional.[2] In two separate studies, 58% of respondents told their doctors about their CAM usage.[4,6] How do prostate cancer patients decide whether or not to use CAM? A qualitative study published in 2005 described results from interviews with prostate cancer patients. The study identified differences in thinking patterns between CAM users and nonusers and suggested that no specific theme led patients to CAM; instead, patients were directed by a combination of ideas. For example, the perception of CAM as harmless was associated with the belief that conventional medicine resulted in many negative side effects.[10] Results of a 2003 qualitative study suggested that decision making about CAM treatments by prostate cancer patients depended on both fixed (e.g., medical history) and flexible (e.g., a need to feel in control) decision factors.[11] Many of the medical and scientific terms used in this summary are hypertext linked (at first use in each section) to the NCI Dictionary of Cancer Terms, which is oriented toward nonexperts. When a linked term is clicked, a definition will appear in a separate window. Reference citations in some PDQ cancer information summaries may include links to external websites that are operated by individuals or organizations for the purpose of marketing or advocating the use of specific treatments or products. These reference citations are included for informational purposes only. Their inclusion should not be considered an endorsement of the content of the websites, or of any treatment or product, by the PDQ Integrative, Alternative, and Complementary Therapies Editorial Board or the National Cancer Institute. Refer to the PDQ summary on Prostate Cancer Prevention for more information on prostate cancer prevention. References

  1. National Cancer Institute: SEER Stat Fact Sheets: Prostate. Bethesda, Md: National Cancer Institute. Available online. Last accessed April 22, 2020.

  2. McDermott CL, Blough DK, Fedorenko CR, et al.: Complementary and alternative medicine use among newly diagnosed prostate cancer patients. Support Care Cancer 20 (1): 65-73, 2012. [PUBMED Abstract]

  3. Westerlund A, Steineck G, Bälter K, et al.: Dietary supplement use patterns in men with prostate cancer: the Cancer Prostate Sweden study. Ann Oncol 22 (4): 967-72, 2011. [PUBMED Abstract]

  4. Eng J, Ramsum D, Verhoef M, et al.: A population-based survey of complementary and alternative medicine use in men recently diagnosed with prostate cancer. Integr Cancer Ther 2 (3): 212-6, 2003. [PUBMED Abstract]

  5. Boon H, Westlake K, Stewart M, et al.: Use of complementary/alternative medicine by men diagnosed with prostate cancer: prevalence and characteristics. Urology 62 (5): 849-53, 2003. [PUBMED Abstract]

  6. Wilkinson S, Farrelly S, Low J, et al.: The use of complementary therapy by men with prostate cancer in the UK. Eur J Cancer Care (Engl) 17 (5): 492-9, 2008. [PUBMED Abstract]

  7. Bauer CM, Ishak MB, Johnson EK, et al.: Prevalence and correlates of vitamin and supplement usage among men with a family history of prostate cancer. Integr Cancer Ther 11 (2): 83-9, 2012. [PUBMED Abstract]

  8. Barqawi A, Gamito E, O'Donnell C, et al.: Herbal and vitamin supplement use in a prostate cancer screening population. Urology 63 (2): 288-92, 2004. [PUBMED Abstract]

  9. Velicer CM, Ulrich CM: Vitamin and mineral supplement use among US adults after cancer diagnosis: a systematic review. J Clin Oncol 26 (4): 665-73, 2008. [PUBMED Abstract]

  10. Singh H, Maskarinec G, Shumay DM: Understanding the motivation for conventional and complementary/alternative medicine use among men with prostate cancer. Integr Cancer Ther 4 (2): 187-94, 2005. [PUBMED Abstract]

  11. Boon H, Brown JB, Gavin A, et al.: Men with prostate cancer: making decisions about complementary/alternative medicine. Med Decis Making 23 (6): 471-9, 2003 Nov-Dec. [PUBMED Abstract]

Calcium In This Section

Overview This section contains the following key information:

  • Calcium is required for certain metabolic functions such as vascular contraction and vasodilation, muscle function, nerve transmission, intracellular signaling, and hormonal secretion.

  • Major sources of calcium in the United States are food and dietary supplements.

  • Studies of the association between calcium and prostate cancer have been limited to nutritional sources of calcium, such as dairy products.

  • Some studies suggest that high total calcium intake may be associated with increased risk of advanced and metastatic prostate cancer, compared with lower intake of calcium.

  • Additional research is needed to clarify the effects of calcium and/or dairy products on prostate cancer risk.

General Information and History Calcium, the most abundant mineral in the body, is found in some foods, added to others, available as a dietary supplement, and present in some medicines (such as antacids). Calcium is required for vascular contraction and vasodilation, muscle function, nerve transmission, intracellular signaling, and hormonal secretion, although less than 1% of total body calcium is needed to support these critical metabolic functions.[1] Serum calcium is very tightly regulated and does not fluctuate with changes in dietary intake; the body uses bone tissue as a reservoir for, and source of, calcium to maintain constant concentrations of calcium in blood, muscle, and intercellular fluids.[1] The major sources of calcium in the U.S. population are food and dietary supplements.[2] According to recent National Health and Nutrition Examination Survey data, U.S. adults obtain 38% of their dietary calcium from milk and milk products, such as yogurt and cheese.[3] Nondairy sources include vegetables, such as Chinese cabbage, kale, and broccoli. Spinach provides calcium, but its bioavailability is poor. Most grains do not have high amounts of calcium unless they are fortified; however, they contribute calcium to the diet because they contain small amounts of calcium, and people consume them frequently. Foods fortified with calcium include many fruit juices and drinks, tofu, and cereals. In the United States, dietary supplements, including calcium supplements, are commonly used to prevent chronic diseases, including cancer.[1] Mean dietary calcium intakes for males aged 1 year and older ranged from 871 to 1,266 mg/day depending on life stage group (i.e., infant, adolescent, or adult). About 43% of the U.S. population uses dietary supplements containing calcium, which increases calcium intake by about 330 mg/day among supplement users.[1,2] To evaluate the association between calcium intake and prostate cancer mortality and morbidity, it may be important to assess objective, biological markers of calcium, include data that account for nutritional and supplemental calcium intake, and control for other confounding factors. However, studies of association between calcium and prostate cancer have been limited to nutritional sources of calcium, such as dairy products. Although more than half of the U.S. population uses vitamin and mineral supplements (at an annual cost of over 11 billion dollars), few studies include supplement use in the association of disease risk, including prostate cancer or mortality rates.[1,2] (Refer to the PDQ summary on Prostate Cancer Prevention for more information.)Preclinical/Animal Studies In vitro studies Prostate cancer cells were treated with bovine milk, almond milk, soy milk, casein, or lactose in a 2011 study. Treatment with bovine milk resulted in growth stimulation of LNCaP prostate cancer cells. Growth of prostate cancer cells was not affected by treatment with soy milk, and treatment with almond milk resulted in growth inhibition.[4]In vivo studies One study investigated the effects of dietary calcium on prostate tumor progression in LPB-Tag transgenic mice. The animals consumed low (0.2%) or high (2.0%) calcium diets and were sacrificed at age 5, 7, or 9 weeks. Tumor weight and progression were similar in mice that were fed low- and high-calcium diets.[5] A 2012 study examined the impact of dietary vitamin D and calcium on prostate cancer growth in athymic mice. The mice were injected with human prostate cancer cells and were randomly assigned to receive specific diets (e.g., high calcium/vitamin D or normal calcium/no vitamin D). The mice that received the normal calcium/vitamin D-deficient diet exhibited significantly greater (P < .05) tumor volumes than did mice that received the other diets.[6]Human Studies Epidemiologic studies Several epidemiological studies have found an association between high intakes of calcium, dairy foods, or both, and an increased risk of developing prostate cancer.[7-9] However, others have found only a weak relationship, no relationship, or a negative association between calcium intake and prostate cancer risk.[10-13] On the basis of these studies, interpretation of the evidence is complicated by the difficulty of separating the effects of dairy products from the effects of calcium. Additionally, earlier epidemiological studies had several limitations. The association of calcium intake with prostate cancer was limited to evidence from self-reported food frequency questionnaires of nutritional sources of calcium, with a focus on dairy foods.[14,15] Competing risk factors, such as other major nutrients in dairy (i.e., fats) and concomitant and confounding factors (i.e., age, body mass index, steroid hormones, and other metabolic events in the causal pathway) were not accounted for. Additionally, no objective markers of calcium, such as serum calcium, were obtained from these cohorts. Observational studies overall, however, suggest that high total calcium intake may be associated with increased risk of advanced and metastatic prostate cancer, compared with lower intake of calcium.[11,12,16-18] Another analysis of 886 prostatectomy patients found an increased risk of being diagnosed with more aggressive disease in men with higher calcium intakes.[19] The hazard of disease recurrence after surgical treatment was increased in men with both very low and high calcium intakes. Additional research is needed to clarify the effects of calcium and/or dairy products on prostate cancer risk and elucidate potential biological mechanisms.Intervention studies In a randomized clinical trial published in 2005, 672 men received either 3 g of calcium carbonate (1,200 mg calcium) or placebo daily for 4 years and were followed for 12 years. During the first 6 years of the study, there were significantly fewer prostate cancer cases in the calcium group compared with the placebo group. However, this difference was no longer statistically significant at the 10-year evaluation.[20]Meta-analyses A meta-analysis published in 2005 reported that there may be an association between increased risk of prostate cancer and greater consumption of dairy products and calcium.[21] A 2008 meta-analysis reviewed 45 observational studies and found no evidence of a link between dairy products and risk of prostate cancer.[22] A meta-analysis of cohort studies published between 1996 and 2006 found a positive association between milk and dairy product consumption and risk of prostate cancer.[23] In a recent review, the U.S. Preventive Services Task Force Evidence Syntheses, formerly Systematic Evidence Reviews, conducted meta-analyses using Mantel-Haenszel fixed effects models for overall cancer incidence, cardiovascular disease incidence, and all-cause mortality. Vitamin D and/or calcium supplementation showed no overall effect on cancer incidence and mortality, including prostate cancer.[3] In a meta-analysis of the association of calcium without the coadministration of vitamin D, a reduced risk of prostate cancer was observed, although there were only a few events.[24] In 2007, the World Cancer Research Fund/American Institute for Cancer Research reported that there was probable evidence that diets high in calcium increase the risk of prostate cancer and that there is limited suggestive evidence that milk and dairy products also increase the risk.[25] Since publication, 18 additional studies that evaluated dairy or calcium intake and the risk of prostate cancer have been published. A 2015 meta-analysis of this literature concluded that high intakes of dairy products, milk, low-fat milk, cheese, total dietary calcium, and dairy calcium may increase prostate cancer risk.[26] Supplemental calcium and nondairy calcium were not associated with an increased risk, although supplemental calcium was associated with an increased risk of fatal prostate cancer. The authors suggested that this association needs additional study.Current Clinical Trials Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.References

  1. Ross AC, Taylor CL, Yaktine AL, et al., eds.: Dietary Reference Intakes for Calcium and Vitamin D. Washington, DC: National Academies Press, 2011. Also available online. Last accessed October 20, 2017.

  2. Lampe JW: Dairy products and cancer. J Am Coll Nutr 30 (5 Suppl 1): 464S-70S, 2011. [PUBMED Abstract]

  3. Fortmann SP, Burda BU, Senger CA, et al.: Vitamin, Mineral, and Multivitamin Supplements for the Primary Prevention of Cardiovascular Disease and Cancer: A Systematic Evidence Review for the U.S. Preventive Services Task Force. Rockville, MD: Agency for Healthcare Research and Quality, 2013. Available online. Last accessed October 20, 2017.

  4. Tate PL, Bibb R, Larcom LL: Milk stimulates growth of prostate cancer cells in culture. Nutr Cancer 63 (8): 1361-6, 2011. [PUBMED Abstract]

  5. Mordan-McCombs S, Brown T, Zinser G, et al.: Dietary calcium does not affect prostate tumor progression in LPB-Tag transgenic mice. J Steroid Biochem Mol Biol 103 (3-5): 747-51, 2007. [PUBMED Abstract]

  6. Ray R, Banks M, Abuzahra H, et al.: Effect of dietary vitamin D and calcium on the growth of androgen-insensitive human prostate tumor in a murine model. Anticancer Res 32 (3): 727-31, 2012. [PUBMED Abstract]

  7. Butler LM, Wong AS, Koh WP, et al.: Calcium intake increases risk of prostate cancer among Singapore Chinese. Cancer Res 70 (12): 4941-8, 2010. [PUBMED Abstract]

  8. Kurahashi N, Inoue M, Iwasaki M, et al.: Dairy product, saturated fatty acid, and calcium intake and prostate cancer in a prospective cohort of Japanese men. Cancer Epidemiol Biomarkers Prev 17 (4): 930-7, 2008. [PUBMED Abstract]

  9. Raimondi S, Mabrouk JB, Shatenstein B, et al.: Diet and prostate cancer risk with specific focus on dairy products and dietary calcium: a case-control study. Prostate 70 (10): 1054-65, 2010. [PUBMED Abstract]

  10. Park Y, Mitrou PN, Kipnis V, et al.: Calcium, dairy foods, and risk of incident and fatal prostate cancer: the NIH-AARP Diet and Health Study. Am J Epidemiol 166 (11): 1270-9, 2007. [PUBMED Abstract]

  11. Giovannucci E, Liu Y, Stampfer MJ, et al.: A prospective study of calcium intake and incident and fatal prostate cancer. Cancer Epidemiol Biomarkers Prev 15 (2): 203-10, 2006. [PUBMED Abstract]

  12. Koh KA, Sesso HD, Paffenbarger RS, et al.: Dairy products, calcium and prostate cancer risk. Br J Cancer 95 (11): 1582-5, 2006. [PUBMED Abstract]

  13. Ahn J, Albanes D, Peters U, et al.: Dairy products, calcium intake, and risk of prostate cancer in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Epidemiol Biomarkers Prev 16 (12): 2623-30, 2007. [PUBMED Abstract]

  14. Park SY, Murphy SP, Wilkens LR, et al.: Calcium, vitamin D, and dairy product intake and prostate cancer risk: the Multiethnic Cohort Study. Am J Epidemiol 166 (11): 1259-69, 2007. [PUBMED Abstract]

  15. Pettersson A, Kasperzyk JL, Kenfield SA, et al.: Milk and dairy consumption among men with prostate cancer and risk of metastases and prostate cancer death. Cancer Epidemiol Biomarkers Prev 21 (3): 428-36, 2012. [PUBMED Abstract]

  16. Mitrou PN, Albanes D, Weinstein SJ, et al.: A prospective study of dietary calcium, dairy products and prostate cancer risk (Finland). Int J Cancer 120 (11): 2466-73, 2007. [PUBMED Abstract]

  17. Kesse E, Bertrais S, Astorg P, et al.: Dairy products, calcium and phosphorus intake, and the risk of prostate cancer: results of the French prospective SU.VI.MAX (Supplémentation en Vitamines et Minéraux Antioxydants) study. Br J Nutr 95 (3): 539-45, 2006. [PUBMED Abstract]

  18. Rohrmann S, Platz EA, Kavanaugh CJ, et al.: Meat and dairy consumption and subsequent risk of prostate cancer in a US cohort study. Cancer Causes Control 18 (1): 41-50, 2007. [PUBMED Abstract]

  19. Binder M, Shui IM, Wilson KM, et al.: Calcium intake, polymorphisms of the calcium-sensing receptor, and recurrent/aggressive prostate cancer. Cancer Causes Control 26 (12): 1751-9, 2015. [PUBMED Abstract]

  20. Baron JA, Beach M, Wallace K, et al.: Risk of prostate cancer in a randomized clinical trial of calcium supplementation. Cancer Epidemiol Biomarkers Prev 14 (3): 586-9, 2005. [PUBMED Abstract]

  21. Gao X, LaValley MP, Tucker KL: Prospective studies of dairy product and calcium intakes and prostate cancer risk: a meta-analysis. J Natl Cancer Inst 97 (23): 1768-77, 2005. [PUBMED Abstract]

  22. Huncharek M, Muscat J, Kupelnick B: Dairy products, dietary calcium and vitamin D intake as risk factors for prostate cancer: a meta-analysis of 26,769 cases from 45 observational studies. Nutr Cancer 60 (4): 421-41, 2008. [PUBMED Abstract]

  23. Qin LQ, Xu JY, Wang PY, et al.: Milk consumption is a risk factor for prostate cancer in Western countries: evidence from cohort studies. Asia Pac J Clin Nutr 16 (3): 467-76, 2007. [PUBMED Abstract]

  24. Bristow SM, Bolland MJ, MacLennan GS, et al.: Calcium supplements and cancer risk: a meta-analysis of randomised controlled trials. Br J Nutr 110 (8): 1384-93, 2013. [PUBMED Abstract]

  25. Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective. Washington, DC: World Cancer Research Fund/American Institute for Cancer Research, 2007. Also available onlineExit Disclaimer. Last accessed February 13, 2020.

  26. Aune D, Navarro Rosenblatt DA, Chan DS, et al.: Dairy products, calcium, and prostate cancer risk: a systematic review and meta-analysis of cohort studies. Am J Clin Nutr 101 (1): 87-117, 2015. [PUBMED Abstract] Continue reading:

If you would like to reproduce some or all of this content, seeReuse of NCI Informationfor guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Prostate Cancer, Nutrition, and Dietary Supplements (PDQ®)–Health Professional Version was originally published by the National Cancer Institute.” SOURCE:

20 views0 comments

Recent Posts

See All
bottom of page